首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A global numerical 3-D MHD model of the solar wind
Authors:A V Usmanov
Institution:(1) Institute of Physics, University of St. Petersburg, 198904 St. Petersburg, Russia
Abstract:A fully three-dimensional, steady-state global model of the solar corona and the solar wind is developed. A numerical, self-consistent solution for 3-D MHD equations is constructed for the region between the solar photosphere and the Earth's orbit. Boundary conditions are provided by the solar magnetic field observations. A steady-state solution is sought as a temporal relaxation to the dynamic equilibrium in the region of transonic flow near the Sun and then traced to the orbit of the Earth in supersonic flow region. The unique features of the proposed model are: (a) uniform coverage and self-consistent treatment of the regions of subsonic/sub-Alfvénic and supersonic/super-Alfvénic flows, (b) inferring the global structure of the interplanetary medium between the solar photosphere and 1 AU based on large-scale solar magnetic field data. As an experimental test for the proposed technique, photospheric magnetic field data for CR 1682 are used to prescribe boundary condition near the Sun and results of a simulation are compared with spacecraft measurements at 1 AU. The comparison demonstrates a qualitative agreement between computed and observed parameters. While the difference in densities is still significant, the 3-D model better reproduces variations of the solar wind velocity than does the 2-D model presented earlier (Usmanov, 1993).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号