首页 | 本学科首页   官方微博 | 高级检索  
     

EnKF协方差膨胀算法对雷达资料同化的影响研究
引用本文:高士博,闵锦忠,黄丹莲. EnKF协方差膨胀算法对雷达资料同化的影响研究[J]. 气象科学, 2016, 36(3): 319-328
作者姓名:高士博  闵锦忠  黄丹莲
作者单位:南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 气象灾害教育部重点实验室, 南京 210044,南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 气象灾害教育部重点实验室, 南京 210044,南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 气象灾害教育部重点实验室, 南京 210044
基金项目:国家重点基础研究发展计划项目(2013CB430102);江苏省普通高校研究生科研创新计划项目(KYLX_0829);江苏省普通高校研究生科研创新计划项目(KYLX_0844);国家自然科学基金重点项目(41430427)和江苏省高校自然科学重大基础研究项目(11KJA170001)
摘    要:基于集合卡尔曼滤波(EnKF)方法同化模拟雷达径向风和回波,引入具有时空自适应理论优势的贝叶斯膨胀算法,通过与常数膨胀算法的对比,分析了两种协方差膨胀算法对EnKF同化效果的影响。结果表明:在对流区域的北侧,由贝叶斯膨胀算法分析得到的回波在水平和垂直结构上均增强;在对流区域,由贝叶斯膨胀算法分析得到的各变量的集合离散度增大,均方根误差减小,水平和垂直速度增大,冷池强度减弱;模拟还发现贝叶斯膨胀算法提高了强对流系统的模拟效果,回波强度增强,阵风锋区内水平和垂直风速增大。这表明贝叶斯膨胀算法有效地改进了基于常数膨胀算法的EnKF同化雷达资料的效果。

关 键 词:集合卡尔曼滤波  雷达资料同化  贝叶斯膨胀算法  常数膨胀算法
收稿时间:2015-01-21
修稿时间:2015-11-30

Impact of inflation methods on radar data assimilation using EnKF
GAO Shibo,MIN Jinzhong and HUANG Danlian. Impact of inflation methods on radar data assimilation using EnKF[J]. Journal of the Meteorological Sciences, 2016, 36(3): 319-328
Authors:GAO Shibo  MIN Jinzhong  HUANG Danlian
Affiliation:Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:Based on the simulated radar reflectivity and radial velocity data assimilated by EnKF, through comparing the introduced Bayes inflation method with the advantage of space-time adaptive theory to constant inflation method, the assimilation effects of two covariance inflation methods on EnKF were analyzed. Results show that horizontal and vertical structures of analysis reflectivity by Bayes inflation experiment are stronger in northern convective branch. In convective region, the root mean square error is lower in Bayes inflation experiments while the spread is higher; Bayes inflation experiment has bigger horizontal and vertical wind while has weaker strength of the cold pool. Results of simulations indicate that the Bayes inflation experiment improves largely the condition of the convective system in the respect of magnitude and position. The horizontal and vertical wind speed is bigger. These evidences mean that Bayes inflation helps to improve the effects of EnKF radar data assimilation.
Keywords:EnKF  Radar data assimilation  Bayes inflation  Constant inflation
本文献已被 CNKI 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号