首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integrated field, satellite and petrological observations of the November 2010 eruption of Erta Ale
Authors:Lorraine Field  Talfan Barnie  Jon Blundy  Richard A Brooker  Derek Keir  Elias Lewi  Kate Saunders
Institution:1. School of Earth Sciences, University of Bristol, Queen??s Road, Bristol, BS8 1RJ, UK
2. Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
3. National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
4. Geophysical Observatory, University of Addis Ababa, Addis Ababa, Ethiopia
Abstract:Erta Ale volcano, Ethiopia, erupted in November 2010, emplacing new lava flows on the main crater floor, the first such eruption from the southern pit into the main crater since 1973, and the first eruption at this remote volcano in the modern satellite age. For many decades, Erta Ale has contained a persistently active lava lake which is ordinarily confined, several tens of metres below the level of the main crater, within the southern pit. We combine on-the-ground field observations with multispectral imaging from the SEVIRI satellite to reconstruct the entire eruptive episode beginning on 11 November and ending prior to 14 December 2010. A period of quiescence occurred between 14 and 19 November. The main eruptive activity developed between 19 and 22 November, finally subsiding to pre-eruptive levels between 8 and 15 December. The estimated total volume of lava erupted is ??0.006?km3. The mineralogy of the 2010 lava is plagioclase?+?clinopyroxene?+?olivine. Geochemically, the lava is slightly more mafic than previously erupted lava lining the caldera floor, but lies within the range of historical lavas from Erta Ale. SIMS analysis of olivine-hosted melt inclusions shows the Erta Ale lavas to be relatively volatile-poor, with H2O contents ??1,300?ppm and CO2 contents of ??200?ppm. Incompatible trace and volatile element systematics of melt inclusions show, however, that the November 2010 lavas were volatile-saturated, and that degassing and crystallisation occurred concomitantly. Volatile saturation pressures are in the range 7?C42?MPa, indicating shallow crystallisation. Calculated pre-eruption and melt inclusion entrapment temperatures from mineral/liquid thermometers are ??1,150?°C, consistent with previously published field measurements.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号