首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts
Authors:Zhengrong Wang  Glenn A Gaetani
Institution:(1) Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA 02543, USA
Abstract:Olivine is abundant in Earth’s upper mantle and ubiquitous in basaltic lavas, but rarely occurs in eclogite. Partial melts of eclogite are, therefore, not in equilibrium with olivine, and will react with peridotite as they migrate through the upper mantle. If such melts erupt at Earth’s surface, their compositions will be highly modified and they may be olivine-saturated. We investigated experimentally the reaction between olivine and siliceous eclogite partial melt, and determined element partitioning between olivine and the melt produced by this reaction. Our results demonstrate that mixing of reacted eclogite partial melt with primitive basalt is capable of producing the positive correlation between melt SiO2 content and olivine Ni content observed in some Hawaiian lavas. Experiments were carried out by equilibrating eclogite partial melt or basalt with San Carlos olivine at 1 bar and 1,201–1,350°C. Our results show that eclogite partial melts equilibrated with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Further, olivine-melt partition coefficients for Ni measured in these experiments are significantly larger than for basalt. Mixing of these melts with primitive Hawaiian tholeiitic lavas results in crystallization of high-Ni olivines similar to those in Makapuu-stage Koolau lavas, even though the mixed magmas have only moderate Ni contents. This results from a hyperbolic increase of the Ni partition coefficient with increasing polymerization of the mixed melt. Note that while eclogite partial melt in contact with peridotite will equilibrate with pyroxene as well as olivine, this will have the effect of buffering the activity of SiO2 in the reacted melt at a higher level. Therefore, an eclogite partial melt equilibrated with harzburgite will have higher SiO2 than one equilibrated with dunite, enhancing the effects observed in our experiments. Our results demonstrate that an olivine-free “hybrid” pyroxenite source is not required to explain the presence of high-Ni olivines in Hawaiian lavas and, therefore, indicate that the proportion of eclogite in the Hawaiian plume is less than has been estimated in recent studies.
Keywords:Ni partitioning  Ni-rich olivines  Koolau lavas  Olivine-free mantle
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号