首页 | 本学科首页   官方微博 | 高级检索  
     


A Framework for Quantitative Assessment of Impacts Related to Energy and Mineral Resource Development
Authors:Seth S. Haines  Jay E. Diffendorfer  Laurie Balistrieri  Byron Berger  Troy Cook  Don DeAngelis  Holly Doremus  Donald L. Gautier  Tanya Gallegos  Margot Gerritsen  Elisabeth Graffy  Sarah Hawkins  Kathleen M. Johnson  Jordan Macknick  Peter McMahon  Tim Modde  Brenda Pierce  John H. Schuenemeyer  Darius Semmens  Benjamin Simon  Jason Taylor  Katie Walton-Day
Affiliation:1. Central Energy Resources Science Center, U.S. Geological Survey, Denver, CO, 80225, USA
2. Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, CO, 80225, USA
3. U.S. Geological Survey, Seattle, WA, 98195, USA
4. Crustal Geophysics and Geochemistry Science Center, U.S. Geological Survey, Denver, CO, 80225, USA
17. Energy Information Administration, U.S. Department of Energy, Washington, DC, USA
5. Department of Biology, University of Miami, Miami, FL, USA
6. Berkeley Law, University of California, Berkeley, CA, USA
7. U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA, USA
8. Department of Energy Resources Engineering, Stanford University, Stanford, CA, USA
9. Consortium for Science, Policy, and Outcomes, Arizona State University, Tempe, AZ, USA
10. U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192, USA
11. National Renewable Energy Lab, Golden, CO, USA
12. Colorado Water Science Center, U.S. Geological Survey, Denver, CO, 80225, USA
13. U.S. Fish and Wildlife Service, Denver, CO, USA
14. Southwest Statistical Consulting, LLC, Cortez, CO, USA
15. Office of Policy Analysis, U.S. Department of the Interior, Washington, DC, USA
16. National Operations Center, Bureau of Land Management, Denver, CO, USA
18. Cape Cod National Seashore, National Park Service, Wellfleet, MA, USA
Abstract:Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sage grouse leks and piñon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. The framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号