首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Organo- and lithofacies of glacial-interglacial deposits in the Norwegian-Greenland Sea: Responses to paleoceanographic and paleoclimatic changes
Authors:T Wagner  R Henrich
Institution:

Universität Bremen, Fachbereich 5, Geowissenschaften, Postfach 330440, D-28334, Bremen, Germany

Abstract:Based on a multiparameter approach a combined litho- and organofacies concept was developed for glacial and interglacial sediment sections along an E-W transect through the central part of the Norwegian-Greenland Sea (NGS).

Modern and past surface water regimes are clearly displayed by specific litho- and organofacies patterns. Interglacial conditions reveal specific Atlantic water associated lithofacies (A and B3) in the eastern and central sector of the Norwegian-Greenland Sea (NGS). Corresponding interglacial organofacies in general are not well correlated to lithofacies due to strong diagenetic degradation of labile, e.g. autochthonous organic matter (OM). While in near-surface sediments a marine-dominated organofacies (I-1) is preserved under Atlantic water masses, this correlation is not evident for lower Holocene and Isotope Stage 5 deposits. However, during Isotopic Event 5.5.1 increased proportions of marine OM are recorded in a high accumulating core on the Vøring Plateau. Glaciomarine background lithofacies (B and C) indicate minor input of ice rafted debris (IRD) and seasonal variable sea-ice cover. Corresponding organofacies (II-1, non-oxidized and II-2, oxidized) are dominated by allochthonous OM. Most spectacular are glacial diamictons (Lithofacies E and F) evidencing short-term sediment pulses due to a sudden disintegration of far advanced tide water ice margins on the outer shelves. These diamictons bear specific organofacies (III-1 and III-2) with a clear predominance of terrigenous and reworked OM.

Some of the diamictons seem to occur contemporaneous with the so called “Heinrich-layers” H1 and H2, suggesting a common trigger-mechanism for the almost simultaneous disintegration of huge continental ice masses along the shelves of North America and the eastern margin of the NGS.

Application of a combined organo- and lithofacies concept provides essential information on spatial and temporal variations of water mass characteristics, the oceanic effects of ice sheet dynamics and circulation models.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号