首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts
Authors:Simon K Allen  Simon C Cox  Ian F Owens
Institution:(1) Department of Geography, University of Canterbury, Christchurch, New Zealand;(2) Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland;(3) GNS Science, Private Bag 1930, Dunedin, New Zealand
Abstract:Slope instabilities in the central Southern Alps, New Zealand, are assessed in relation to their geological and topographic distribution, with emphasis given to the spatial distribution of the most recent failures relative to zones of possible permafrost degradation and glacial recession. Five hundred nine mostly late-Pleistocene- to Holocene-aged landslides have been identified, affecting 2% of the study area. Rock avalanches were distinguished in the dataset, being the dominant failure type from Alpine slopes about and east of the Main Divide of the Alps, while other landslide types occur more frequently at lower elevations and from schist slopes closer to the Alpine Fault. The pre-1950 landslide record is incomplete, but mapped failures have prevailed from slopes facing west–northwest, suggesting a structural control on slope failure distribution. Twenty rock avalanches and large rockfalls are known to have fallen since 1950, predominating from extremely steep east–southeast facing slopes, mostly from the hanging wall of the Main Divide Fault Zone. Nineteen occurred within 300 vertical metres above or below glacial ice; 13 have source areas within 300 vertical metres of the estimated lower permafrost boundary, where degrading permafrost is expected. The prevalence of recent failures occurring from glacier-proximal slopes and from slopes near the lower permafrost limit is demonstrably higher than from other slopes about the Main Divide. Many recent failures have been smaller than those recorded pre-1950, and the influence of warming may be ephemeral and difficult to demonstrate relative to simultaneous effects of weather, erosion, seismicity, and uplift along an active plate margin.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号