首页 | 本学科首页   官方微博 | 高级检索  
     


Radar backscatter from mechanically generated transient breakingwaves. II. Azimuthal and grazing angle dependence
Authors:Dano   E.B. Lyzenga   D.R. Meadows   G. Meadows   L. Van Sumeren   H. Onstott   R.
Affiliation:BAE Syst., Nashua, NH;
Abstract:For Pt. I see ibid. vol. 26, pp. 181-200 (2001). This paper describes the results of experimental investigations into the microwave backscatter from mechanically generated transient breaking waves. The investigations were carried out in a 110 m×7.6 m×4 m deep model basin, utilizing chirped wave packets spanning 0.75-1.75 Hz. Backscatter measurements were taken by a K-band continuous wave radar (24.125 GHz) at 40° angle of incidence, and at azimuth angles of 0°, 45°, 90°, 135° and 180° relative to the direction of wave propagation. Grazing measurements were conducted using an X-band (10.525 GHz) FMCW radar at 85° angle of incidence, and azimuth angles of 0° and 180°. Results show that the maximum radar backscatter was obtained in the upwave direction prior to wave breaking and was caused by the specular or near specular presentation of the wave to the radar. After breaking, the backscatter transitioned from a specular or near-specular dominated scattering, primarily seen in the upwave direction, to a small scale roughness dominated scattering, observed at all azimuths. Physical optics solutions were found to correctly predict the backscatter for the specular or near-specular dominated scattering and the small perturbation method was found to accurately model the VV polarization post-break radar backscatter
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号