首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Verification and mitigation of the power-induced measurement errors for airport pseudolites in LAAS
Authors:Email author" target="_blank">Sai?KiranEmail author  Chris?Bartone
Institution:(1) Avionics Engineering Center, Ohio University, Stocker Center 234B, Athens, OH 45701, USA;(2) School of Electrical Engineering and Computer Science, Ohio University, Stocker Center 351, Athens, OH 45701, USA
Abstract:Certain GPS receivers exhibit a power-induced measurement error when the input signal power exceeds a certain threshold that is a function of the receiver architecture. The characterization of this error is important in the case of airport pseudolites (APLs) due to receiver saturation at ranges close to the transmission antenna. This paper details an effort using laboratory test to characterize the power-induced measurement error in NovAtel Millennium and Beeline receivers that are widely used for APL development. The results from the laboratory tests show that this effect can lead to errors as large as 3 m on pseudorange measurement for the dynamic range typical for APLs. The carrier-phase error however is seen to be limited to 5 cm. On the verification and characterization of the error, a cost-effective mitigation technique for LAAS is proposed. A solution for the ground subsystem is sought by employing power-control measures to limit the amount of APL power that LGF GPS/APL receivers are exposed to. In order to keep the integration cost low, the solution for the airborne subsystem does not involve hardware modifications or additions, but rather relies on the transition to a differential carrier-phase positioning algorithm prior to the onset of the power-induced error along the approach path. The proposed architecture was flight-tested to verify successful mitigation of the power-induced error on both the ground and air, and the results from these tests are presented in the paper.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号