首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cloud effects on air-sea interactions during the 1979 Indian summer monsoon as studied from satellite observations
Authors:C Gautier  B DiJulio
Institution:(1) Scripps Institution of Oceanography, California Space Institute, La Jolla, California, USA;(2) Present address: Department of Geography, University of California, 93106 Santa Barbara, CA, USA
Abstract:Summary The Indian summer monsoon, one of the earth's most vigorous and energetic seasonally occurring weather events, influences the global atmospheric circulation. Its onset, duration, and intensity are governed by large- and meso-scale geophysical processes, such as surface solar heating and air-sea interactions. In this paper, using innovative combinations of satellite sensor data, we investigate some of these fundamental processes which are closely tied to clouds and control the monsoon system's evolution. The study, which focuses on the monsoon period of June, 1979, examines the low-frequency variability of clouds and their effects on air-sea processes through an analysis of the complex influence clouds play on the surface heat and water budgets. First, the effects of clouds on both the solar and longwave components of the surface radiation budget are assessed using a cloud radiative forcing parameter. While the effects of clouds on the long-wave irradiance act in a manner opposite to their effects on the shortwave irradiance, only a partial compensation is found to take place and the net effect results in a maximum cloud forcing of 60 Wm–2 in the southwestern Arabian Sea. Second, employing satellite-derived precipitation and evaporation estimates, the paper analyzes the net surface fresh water budget variability around the monsoon onset. This budget is important in that fresh water affects the upper ocean density distribution and, consequently, the thermohaline circulation. Two regions are found to dominate the analysis: the western Arabian Sea, where evaporation is dominant by more than 10 mm day–1, and the eastern Arabian Sea, where precipitation is dominant by more than 10 mm day–1. Thus, a strong zonal gradient of fresh water at the surface is established during the monsoon. The last topic investigated is the intraseasonal variability of convection as analyzed using a cloud parameter indicative of deep convection. Cloud oscillations of 30–50 days, associated with the different phases of the monsoon, are found to propagate northward in the eastern Indian Ocean and eastward in the Bay of Bengal. Our analysis not only supports the hypothesis that the 30–50-day oscillation is driven by deep convection but also, and more importantly, suggests that the ocean thermal forcing is modulated by 30–50-day oscillations through cloud-induced surface radiative forcing. Although the results presented are limited in scope and preliminary because of the diffculty in quantifying the accuracy of the parameters examined, they do demonstrate: 1) the role of clouds in modulating the surface heat and water budgets, 2) the advantage of using combinations of multi-sensor and multi-platform satellite observations to quantify interrelated surface heat/water budget processes, and 3) the potential to examine the intraseasonal variability of air-sea interaction processes associated with the monsoon, even though these processes are not directly measurable from space.With 6 FiguresB. DiJulio passed away in September 1990.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号