首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulations of protostellar encounters — I. Star–disc encounters
Authors:H. M. J. Boffin,S. J. Watkins,A. S. Bhattal,N. Francis,&   A. P. Whitworth
Affiliation:Department of Physics and Astronomy, University of Wales, Cardiff CF2 3YB
Abstract:It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key role in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause fragmentation of the discs, thereby triggering the formation of additional stars.   We have carried out a series of simulations of star–disc interactions using an SPH code which treats self-gravity, hydrodynamic and viscous forces. We find that interactions between discs and stars provide a mechanism for removing energy from, or adding energy to, the orbits of the stars, and for truncating the discs. However, capture during such encounters is unlikely to be an important binary formation mechanism.   A more significant consequence of such encounters is that they can trigger fragmentation of the disc, via tidally and compressionally induced gravitational instabilities, leading to the formation of additional stars and substellar objects. When the disc spins and stellar orbits are randomly oriented, encounters lead to the formation of new companions to the original star in 20 per cent of encounters. If most encounters are prograde and coplanar, as suggested by simulations of dynamically triggered star formation, then new companions are formed in approximately 50 per cent of encounters.
Keywords:accretion, accretion discs    hydrodynamics    instabilities    methods: numerical    binaries: general    stars: formation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号