首页 | 本学科首页   官方微博 | 高级检索  
     


A description of the crater Tsiolkovsky on the lunar far side
Authors:A. Tyrie
Affiliation:(1) Centre for Surveying Science, University of Toronto, Erindale College, Mississauga, Ontario, Canada
Abstract:Although researchers in the last decade have been primarily concerned with the exotic findings of the more distant planets and moons in our solar system, as given by the Voyager series, there is still much work to be done on our nearer neighbours, including the Moon. This paper summarizes some basic age dating of a portion of the lunar surface, namely the mare in the crater Tsiolkovsky on the lunar far side.Using the Apollo 15 panoramic camera photographs, the cumulative crater frequency (N km-2) relative to crater diameter (D) distribution has been obtained for the mare in the crater Tsiolkovsky. The diameter size range sampled was 0.07 km < D < 1 km. A total of 12 604 craters were counted and their average apparent diameters measured. There were 85 sample areas on the mare surface which were chosen at random, after exclusion of blanketed, volcanic or secondary cratered areas. It was found that a large proportion of the crater floor contains endogenic features, especially volcanic vents at approximately D = 0.3 km. An additional 7 areas of interest were also examined in detail for comparison with areas of purely primary impact craters. Evidence for up to 8 lava floodings can be detected from the size-frequency distributions although no visual data, e.g., flow lobes, can be seen on the mare surface.The total size-frequency distribution for all the areas is coincident with Neukum et al. (1975a and b) Calibration Distribution in the size range 0.25 km < D < 1 km which is at the smallest crater diameters that they obtained. Neukum et al. (1975a and b) give their distribution as a polynomial of 7th degree. However, in this present study a variation is indicated in the steepening of the curve for D < 0.1 km.The results also approximate (but only for D < 0.6 km) the distribution obtained by Shoemaker et al. (1970) in the range 100 m < D < 3 km where N ~ D-2.9. The best fit line reached for the data given here is N ~ D-2.682.Comparison of the distribution with plots for the maria at Apollo 11, 12, and 15 landing sites show that Tsiolkovsky mare is 3.51 ± 0.1 × 109 yr old. This agrees with other workers (see Gornitz, 1973) who place it between Mare Tranquillitatis (Apollo 11 radiometric dating: 3.5 to 3.9 aeons) and Oceanus Procellarum (Apollo 12: 3.5 to 3.4 aeons). There are no rock samples from Tsiolkovsky to given an absolute age.This places Tsiolkovsky mare within the weighted mean of the age range (1.0 to 4.3 × 109 yr old) of the maria on the Moon. From this it can be concluded that the processes producing the vast basalt outpourings seen on the Moon's face apply for the far side also and that there is a linking factor for the whole Moon.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号