首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of metamorphic fluids in shear zones: The record from the emeralds of Habachtal, Tauern Window, Austria
Authors:Y Y Nwe and G Grundmann
Institution:

a Department of Geology, Rangoon University, Rangoon, Burma

b Lehrstuhl für Angewandte Mineralogie und Geochemie, Technische Universität München, Lichtenbergstrasse 4, D-8046, Garching, F.R., Germany

Abstract:Fluid inclusions in emeralds from the Habachtal, Central Tauern Window, have been studied by microthermometry. Results allow a detailed reconstruction of trapping history and evolution of the metamorphic fluids during the Middle Alpine Tauernkristallisation metamorphic event and some of the subsequent cooling period. Five different types of fluid inclusions, corresponding to at least five trapping periods, have been distinguished. In general, the earliest primary (type 1) inclusions, which occur as negative crystals or thin long tubes, are represented by low salinity ( < 10 wt. % NaCl equivalent) aqueous fluids with or without CO2 with up to XCO2 ≈ 0.04. Later primary type 2 inclusions are distinguished by different morphologies and distribution patterns. Lower salinity CO2-free brines and CO2-bearing denser inclusions with higher CO2 contents (up to XCO2 ≈ 0.11) are characteristic of this stage. The type 2 inclusions may also occur as pseudosecondary arrays. The effects of necking have been studied, and found to be considerable in the type 1 primary inclusions. This mechanism has occasionally resulted in the appearance of almost pure CO2 fluids. The possibility of fluid immiscibility has been examined, and rejected, for the apparent “coexistence” of primary brine and CO2-bearing inclusions. Instead, mixing of fluids which fluctuated between two different compositions is proposed. The fluctuation was probably due to the sequence of hydration reactions during the Tauernkristallisation. Maximum trapping pressures (3.6 kbar) obtained for stage 1 of the Tauernkristallisation are thought to represent a situation where sublithostatic fluid pressures exested in shear zones during the crystallisation period of many of the emerald cores and coexisting biotite and actinolite. Maximum fluid pressures of 7 kbar were obtained from the type 2 inclusions. This is similar to pressure estimates obtained from mineral equilibria. At least four phases of deformation are indicated by the trapping history. A pressure-temperature-time path for the Tauernkristallisation and the subsequent cooling/uplift period has been constructed for the Habachtal area, using the maximum pressure estimates obtained in this work together with previously existing data. In the cooling period, fluid pressures lower than the lithostatic load again prevailed. This difference, about 1–2 kbar, was probably due to late stage fracturing and/or the development of an open system. At least two more phases of minor deformation and three more stages of entrapment have been defined for this period. During this time, fluids gradually evolved towards more CO2-poor, and less saline compositions. The present work shows that the possibility of fluctuations in fluid pressures must be considered seriously when attempting to define the PT cooling path from fluid inclusions in metamorphic rocks, especially those in shear zones. Postulations of retrograde PT paths based on fluid inclusions alone may result in pressure estimates which are too low.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号