首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Active faults, seismicity and stresses in an internal boundary of a tectonic arc (Campo de Dalías and Níjar, southeastern Betic Cordilleras, Spain)
Authors:Carlos Marín-Lechado  Jesús Galindo-Zaldívar  Luis Roberto Rodríguez-Fernndez  Inmaculada Serrano  Antonio Pedrera
Institution:aInstituto Geológico y Minero de España, Río Rosas 23, 28003 Madrid, Spain;bDepartamento de Geodinámica, Universidad de Granada, 18071 Granada, Spain;cInstituto Andaluz de Geofísica, Universidad de Granada, 18071 Granada, Spain
Abstract:The Betic-Rif Cordilleras, formed by the interaction of NW–SE convergence between the Eurasian and African plates and the westward motion of their Internal Zones, provide a good example of an active tectonic arc. The Campo de Dalías and Campo de Níjar constitute outcropping sectors of Neogene and Quaternary rocks located in the southeastern border of the Betic Cordilleras and allow us to study the recent deformations developed in the internal border of this tectonic arc.The main active faults with related seismicity, representing a moderate seismic hazard, associated to the southeastern Betic Cordilleras boundary, include high-angle NW–SE-oriented normal faults that affect, at least, the upper part of the crust, a main detachment located at 10 km depth, and probably another detachment at 20 km as well. Seismite structures, recent fault scarps with associated colluvial wedges that deform the drainage network and the alignment of the coastline, indicate that the high-angle faults have been active at least since the Quaternary.Paleostresses determined from microfault analysis in Quaternary deposits generally show an ENE–WSW trend of extension. Present-day earthquake focal mechanisms include normal, strike-slip and reverse faulting. Normal and strike-slip focal mechanisms generally indicate ENE–WSW extension, and strike-slip and reverse focal mechanisms are related to NNW–SSE compression.The maximum horizontal compression has a consistently NNW–SSE trend. The deep activity of detachments and reverse faults determines the NNW–SSE crustal shortening related to the Eurasian–African plate convergence. At surface, however, the predominance of normal faults is probably produced by the increase in the relative weight of the vertical stress axis, which in turn may be related to relief uplift and subsequent horizontal spreading. The internal mountain front boundary of the Betic Cordilleras developed through the activity of a set of structures that is more complex than a typical external mountain front, probably as a consequence of a vertical variable stress field that acted on previously deformed rocks belonging to the Internal Zone of the cordilleras.
Keywords:Internal mountain front  Active faulting  Seismicity  Betic Cordilleras
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号