首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rock friction-effect of confining pressure,temperature, and pore pressure
Authors:R M Stesky
Institution:(1) Erindale College, University of Toronto, L5L 1C6 Mississauga, Ontario, Canada
Abstract:This paper reviews many of the mechanical properties of faulted and jointed rock under pressure and temperature and in the presence of water. At low effective confining pressures (below about 1 kilobar), the friction strength is quite variable and depends on the frictional resistance between gouge particles or asperities and on the dilatancy of the fault. At higher pressures the friction strength is nearly independent of mineralogy, temperature, and rate, at least for rocks whose friction strength is less than the failure strength. Water tends to slightly weaken the fault. The type of sliding motion, whether stick-slip or stable sliding, is much more affected by environmental and mineralogical factors. In general, stick-slip is dominant at high pressures and low temperatures, in the presence of strong minerals such as quartz and feldspar, in the absence of gouge, for lower surface roughness, and perhaps in the presence of water. The microscopic deformation mechanisms are poorly understood. At low temperatures, cataclasis dominates in rocks containing mostly quartz or feldspar, and plastic deformation in rocks containing mostly calcite or platy silicates. At high temperature most minerals deform plastically, producing a greater temperature-and rate-dependence of the friction strength. Glass has been found in some sliding surfaces in sandstone.
Keywords:Friction  Pressure  Temperature  Water  Stress  Gouge  Joints  Faults
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号