首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of natural risk: analysing changing landslide hazard in Wellington,Aotearoa/New Zealand
Authors:Gabi Hufschmidt  Michael J Crozier
Institution:(1) School of Earth Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
Abstract:This paper addresses the temporal variation of rainfall-triggered landslide hazard within the broader context of natural risk evolution. Analysis of a sequence of aerial photos covering a period of 60 years allowed the establishment of a record of landsliding for a site in the Wellington region, New Zealand. The data show one very dominant peak in the magnitude of landslide occurrence in the late 1970s, followed by a continuous decrease. Landslide hazard can be expressed by the frequency and magnitude of the landslide events, with the total surface area affected used as a surrogate for magnitude. However, the distinct decline of landslide magnitude through time from the 1980s onwards indicates that landslide hazard may change with time. This possibility is further explored by correlating potential landslide triggering storms with the magnitude of the landslide event, using the ‘Antecedent Soil Water Status’ model in combination with daily rainfall. The relation between magnitudes of rainfall and magnitudes of landslide events is found to be weak, suggesting that a given ‘Critical Water Content’ (antecedent soil water status and rainfall on the day) does not produce similar magnitudes of landsliding. Furthermore, the study shows that reactivation of previous landslides before the peak landslide occurrence of the late 1970s is low, while the situation is reversed after this peak and reactivation in the subsequent years plays a larger role. It is concluded that the pattern of landsliding cannot be explained by the pattern of rainfall and other factors are controlling the variation of landslide hazard in time. A possible explanation is a change of the geomorphological system with time, instigated by a massive period of landsliding (the late 1970s peak). Subsequent sediment exhaustion of source areas resulting from this period appears to alter the system’s subsequent reaction to an external trigger such as rainfall. The study demonstrates that landslide hazard analysis in general should not rely on the integral of the frequency–magnitude relationship only, but should include potential non-linear changes of system settings to increase the understanding of future system behaviour, and therefore hazard and risk.
Contact Information Gabi HufschmidtEmail:
Keywords:Antecedent soil water status  Reactivation  Landslide  Hazard variability  Risk variability  Non-linearity  New Zealand
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号