首页 | 本学科首页   官方微博 | 高级检索  
     


Laboratory simulations of coastally trapped waves with rotation, topography and stratification
Authors:Peter G. Baines   Don L. Boyer  Bin Xie
Affiliation:aDepartment of Civil and Environmental Engineering, University of Melbourne, Victoria 3010, Australia;bEnvironmental Fluid Dynamics Program, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, USA
Abstract:We describe observations of the generation and propagation of coastally trapped waves in the laboratory and their comparison with theory, over a range of values of several experimental parameters. The topography and stratification used consisted of a sloping continental shelf and vertical continental slope with three-layer stratification that could be approximated by an extended version of the Gill and Clarke model [Gill, A.E., Clarke, A., 1974. Wind-induced upwelling, coastal currents and sea level changes. Deep Sea Res. 21, 325–345]. The latter was modified to accommodate a central mixed layer, curved geometry, and friction on the shelf. This configuration represents coastal geometry with large Burger number. The experiments were successful in realizing coastally trapped waves that were consistent with the theoretical expectations. However, the waves propagated more slowly, and for narrow shelves were damped more rapidly than predicted by the theory. The first was attributed to: (i) the effect of stratification on fluid on the shelf, reducing the topographic Rossby wave effect; (ii) the parameterization of the viscosity. The second difference was attributed to the mechanism of generation: the paddle used did not always generate sinusoidal waves, and the subsequent dispersion resulted in a net loss of amplitude.
Keywords:Topography   Amplitude   Coastal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号