首页 | 本学科首页   官方微博 | 高级检索  
     


The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts
Authors:Bjorn O. Mysen
Affiliation:Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015, USA
Abstract:Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, View the MathML source, calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that View the MathML source is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, View the MathML source, increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号