首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics simulations of kinetic isotope fractionation during the diffusion of ionic species in liquid water
Authors:Ian C Bourg  Garrison Sposito
Institution:a Department of Geochemistry, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b Division of Ecosystem Sciences, 137 Mulford Hall MC 3114, University of California, Berkeley, CA 94720-3114, USA
Abstract:Interpretation of isotope ratios, a powerful tool in geochemical investigations of fluid-rock systems, requires an understanding of all relevant processes that fractionate isotopes. One such process, diffusion in liquid water, has remained problematic despite its potential significance as a major cause of kinetic isotope fractionation. Recent laboratory experiments published by Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D., Williams, R. W., Sturchio, N. C., and Beloso Jr., A. D. (2006) Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim. Cosmochim. Acta70, 277-289.] have shown clearly for the first time that lithium and chloride isotopes are fractionated by diffusion in liquid water, whereas magnesium isotopes are not. In the present paper, we present the results of molecular dynamics simulations of lithium, chloride, and magnesium diffusion in liquid water that were designed to provide molecular-scale insight into the experimental findings of Richter et al. (2006). Our results indicate that the self-diffusion coefficients of lithium, chloride, and magnesium isotopes follow an inverse power-law dependence on ion mass (View the MathML source, where Di is the self-diffusion coefficient of a solute with isotopic mass mi). The power-law exponents (β) deduced for lithium, chloride, and magnesium from the diffusivity data of Richter et al. (2006) are consistent with the mass dependencies found in our simulations. Further analysis of our simulation results showed that the experimental β-values are inversely related to the residence times of water molecules in the first solvation shells of the diffusing ions, as expected from mode-coupling and renormalized kinetic theories.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号