首页 | 本学科首页   官方微博 | 高级检索  
     


Feedback Mechanisms Between Cyanobacterial Blooms,Transient Hypoxia,and Benthic Phosphorus Regeneration in Shallow Coastal Environments
Authors:Mindaugas Zilius  Marco Bartoli  Mariano Bresciani  Marija Katarzyte  Tomas Ruginis  Jolita Petkuviene  Irma Lubiene  Claudia Giardino  Paul A. Bukaveckas  Rutger de Wit  Arturas Razinkovas-Baziukas
Affiliation:1. Coastal Research and Planning Institute, Klaipeda University, 92294, Klaipeda, Lithuania
2. Department of Environmental Sciences, Parma University, 43100, Parma, Italy
3. Optical Remote Sensing Group, CNR-IREA, Milan, Italy
4. Department of Biology, Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA, 23284, USA
5. Ecologie des Systèmes marins c?tiers (Ecosym), UMR 5119, Université Montpellier 2, CNRS, IRD, Ifremer, Université Montpellier 1, Montpellier, France
Abstract:We investigated the dissolved oxygen metabolism of the Curonian Lagoon (Baltic Sea) to assess the relative contributions of pelagic and benthic processes to the development of transient hypoxic conditions in shallow water habitats. Metabolism measurements along with the remote sensing-derived estimates of spatial variability in chlorophyll a were used to evaluate the risk of hypoxia at the whole lagoon level. Our data demonstrate that cyanobacterial blooms strongly inhibit light penetration, resulting in net heterotrophic conditions in which pelagic oxygen demand exceeds benthic oxygen demand by an order of magnitude. The combination of bloom conditions and reduced vertical mixing during calm periods resulted in oxygen depletion of bottom waters and greater sediment nutrient release. The peak of reactive P regeneration (nearly 30 μmol m?2 h?1) coincided with oxygen depletion in the water column, and resulted in a marked drop of the inorganic N:P ratio (from >40 to <5, as molar). Our results suggest a strong link between cyanobacterial blooms, pelagic respiration, hypoxia, and P regeneration, which acts as a feedback in sustaining algal blooms through internal nutrient cycling. Meteorological data and satellite-derived maps of chlorophyll a were used to show that nearly 70 % of the lagoon surface (approximately 1,000 km2) is prone to transient hypoxia development when blooms coincide with low wind speed conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号