首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observations of intensity oscillations in a prominence-like cool loop system as observed by SDO/AIA: evidence of multiple harmonics of fast magnetoacoustic waves
Authors:A K Srivastava  B N Dwivedi  Mukul Kumar
Institution:1. Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India
2. Department of Applied Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
Abstract:Using SDO/AIA 304 Å channel, we study the evolution of weak intensity oscillations in a prominence like cool loop system observed at North-West limb on 7 March 2011. We use the standard wavelet tool to produce statistically significant power spectra of AIA 304 Å normalized fluxes derived respectively near the apex and footpoint of the fluxtube. We find periodicities of ≈667 s and ≈305 s respectively near apex and above footpoint with significance level >98 %. Observed statistically significant periodicities in the tube of projected length ≈170 Mm and width ≈10 Mm, are interpreted as most likely signature of evolution of various harmonics of tubular fast magnetoacoustic waves. Sausage modes are unlikely though they are compressive as they need bulky and highly denser loop system for their evolution for sustaining such large periods. We interpret the observed periodicities as multiple harmonics (fundamental and first) of fast magnetoacoustic kink waves that can generate some weak density perturbations (thus intensity oscillations) in the tube and can be observed pertaining to periodic variation in plasma column depth as tube is oblique in projection with respect to line-of-sight. The period ratio P 1/P 2=2.18 is observed in the fluxtube, which is the signature of the magnetic field divergence of the cool loop system. We estimate tube expansion factor as 1.27 which is typical of EUV bipolar loops in the solar atmosphere. We estimate the lower bound average magnetic fields ranging from ≈9 to 90 Gauss depending upon typical densities as 109–1011 cm?3 in the observed prominence-like cool loop system. We also observe the first signature of lowering fundamental mode period by a factor 0.85 due to cooling of this loop system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号