首页 | 本学科首页   官方微博 | 高级检索  
     


Geochronology and geochemistry of early Paleozoic granitic and coeval mafic rocks from the Tannuola terrane (Tuva,Russia): Implications for transition from a subduction to post-collisional setting in the northern part of the Central Asian Orogenic Belt
Affiliation:2. Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia;3. Orebusters Pty Ltd, Gwelup 6018, WA, Australia
Abstract:Early Paleozoic magmatism of the Tannuola terrane located in the northern Central Asian Orogenic Belt is important to understanding the transition from subduction to post-collision settings. In this study, we report in situ zircon U-Pb ages, whole rock geochemistry, and Sr-Nd isotopic data from the mafic and granitic rocks of the eastern Tannuola terrane to better characterize their petrogenesis and to investigate changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal three magmatic episodes for about 60 Ma from ∼510 to ∼450 Ma, that can be divided into the late Cambrian (∼510–490 Ma), the Early Ordovician (∼480–470 Ma) and the Middle-Late Ordovician (∼460–450 Ma) stages. The late Cambrian episode emplaced the mafic, intermediate and granitic rocks with volcanic arc affinity. The late Cambrian mafic rocks of the Tannuola terrane may originate from melting of mantle source that contain asthenosphere and subarc enriched mantle metasomatized by melts derived from sinking oceanic slab. Geochemical and isotopic compositions indicate the late Cambrian intermediate-granitic rocks are most consistent with an origin from a mixed source including fractionation of mantle-derived magmas and crustal-derived components. The Early Ordovician episode reveal bimodal intrusions containing mafic rocks and adakite-like granitic rocks implying the transition from a thinner to a thicker lower crust. The Early Ordovician mafic rocks are formed as a result of high degree melting of mantle source including dominantly depleted mantle and subordinate mantle metasomatized by fluid components while coeval granitic rocks were derived from partial melting of the high Sr/Y mafic rocks. The latest Middle-Late Ordovician magmatic episode emplaced high-K calc-alkaline ferroan granitic rocks that were formed through the partial melting the juvenile Neoproterozoic sources.These three episodes of magmatism identified in the eastern Tannuola terrane are interpreted as reflecting the transition from subduction to post-collision settings during the early Paleozoic. The emplacement of voluminous magmatic rocks was induced by several stages of asthenospheric upwelling in various geodynamic settings. The late Cambrian episode of magmatism was triggered by the slab break-off while subsequent Early Ordovician episode followed the switch to a collisional setting with thickening of the lower crust and the intrusion of mantle-induced bimodal magmatism. During the post-collisional stage, the large-scale lithospheric delamination provides the magma generation for the Middle-Late Ordovician granitic rocks.
Keywords:Early paleozoic  Magmatism  Tuva  Tannuola terrane  Central Asian Orogenic Belt
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号