首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Counterrotating Galaxies and Memory of Cosmological Initial Conditions
Authors:N Voglis  M Harsoula  CH Efthymiopoulos
Institution:(1) Department of Astronomy, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece;(2) Research Center of Astronomy, Academy of Athens, Greece
Abstract:As it is known, a good number of galaxies are observed to have counterrotating cores. A popular scenario to explain the formation of such galaxies is based on a secondary process of merging of galaxies with their satellites, or gas infall, or merger events between galaxies. An alternative mechanism, proposed by Voglis et al., 1991, and by Harsoula and Voglis 1998, could also be responsible for the formation of these galaxies directly from cosmological initial conditions (direct scenario). The novel mechanism was demonstrated by using quiet cosmological initial conditions in N-body simulations. In the present paper we extend our N-body simulations using clumpy initial conditions and show that this mechanism still works to create counterrotating galaxies. Counterrotation is a result of the considerable amount of memory of initial conditions surviving for times comparable to the Hubble time, despite the large degree of instability of individual orbits and the dramatic redistribution and mixing of the particles in phase space. We show, for example, that the particles remember, in a statistical sense, not only their distance from the center of mass (memory of energy), but also the initial orientation of their position relative to the direction of an external tidal field, which determines the sign and the amount of angular momentum that is transferred to the particles of the system.
Keywords:galactic dynamics  cosmology
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号