首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesoscale wind climate modelling in steep mountains
Abstract:Abstract

Although the Mesoscale Community Compressible (MC2) model successfully reproduces the wind climate (for wind energy development purposes) of the Gaspé region, equivalent simulations for the steep mountainous southern Yukon have been unsatisfactory. An important part of the problem lies in the provision of suitable boundary conditions in the lower troposphere. This paper will describe an alternative provision of boundary conditions to the MC2 model based partly on standard National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis statistics, however, with modified lower tropospheric conditions based on local radiosonde measurements.

The MC2 model is part of the AnemoScope wind energy simulation toolkit which applies statistical‐dynamical downscaling of basic large‐scale weather situations (i.e., the NCEP/NCAR Reanalysis) to simulate the steadystate wind climate of a complex region. A case study summarized here imposes a typical mean winter temperature inversion on the boundary conditions to reduce downward momentum transfer in the MC2 model over the Whitehorse region. In conjunction with this step, the geostrophic wind at the boundaries is held constant (with height) in speed and direction, based on the (observed) dominant southwesterly winds above the mountaintops. The resulting simulation produces wind directions within the modelled domain that are in much better agreement with the available measurements. However, despite the imposed atmospheric stability, downward transfer of horizontal momentum from aloft still appears to exceed that occurring in nature.

It is recommended that (in future studies of this type regarding mountain wind climate) the input statistics processed from the NCEP/NCAR Reanalysis be modified by referencing the geostrophic winds to a level above the mountaintops. It is also suggested that converting to a height (z) coordinate system may reduce the erroneous downward momentum transfer found in the present terrain‐following grid.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号