首页 | 本学科首页   官方微博 | 高级检索  
     

用人工神经网络方法分析油藏压裂效果——以靖安油田塞A井区长2油藏为例
引用本文:李新明. 用人工神经网络方法分析油藏压裂效果——以靖安油田塞A井区长2油藏为例[J]. 地质与资源, 2009, 18(3): 217-221. doi: 10.13686/j.cnki.dzyzy.2009.03.008
作者姓名:李新明
作者单位:中国石油长庆油田公司第三采油厂,宁夏,银川,750006
摘    要:通过已有的少数井的试井资料分析得出压裂裂缝参数,以现有的参数为样本建立人工神经网络系统.以影响压裂结果的地层厚度、孔隙度、泥质含量、压裂施工参数、工作压力加砂排量为输入参数,以裂缝导流能力和裂缝半长为输出参数,用BP神经网络训练,推断出所有井的压裂裂缝参数,从而得到整个油藏的压裂裂缝分布特征,对压裂措施的效果有了直观的评价.

关 键 词:人工神经网络  试井分析  裂缝
收稿时间:2009-04-28
修稿时间:2009-07-17

ANALYSIS ON THE FRACTURING RESULT OF RESERVOIR BY ARTIFICIAL NEURAL NETWORK:A case study of the C2 reservior in SA wellblock,Jingan oilfeld
LI Xin-ming. ANALYSIS ON THE FRACTURING RESULT OF RESERVOIR BY ARTIFICIAL NEURAL NETWORK: A case study of the C2 reservior in SA wellblock, Jingan oilfeld[J]. Geology and Resources, 2009, 18(3): 217-221. doi: 10.13686/j.cnki.dzyzy.2009.03.008
Authors:LI Xin-ming
Affiliation:No. 3 Oil Extraction Plant, Changqing Oilfield Branch, PetroChina, Yinchuan 750001, China
Abstract:The fracture parameters are obtained through the well test data from a small number of wells.With the existing parameters as samples,the artificial neural network system is set up.The input parameters that influence the outcome of fracturing,such as the formation thickness,porosity,clay content,working stress and sand displacement,are selected.The ability to fracture conductivity and fracture half-length are the output parameters.With training by BP neural networks,the fracturing parameters of the whole wel...
Keywords:artificial neural network  well test analysis  fracture  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地质与资源》浏览原始摘要信息
点击此处可从《地质与资源》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号