首页 | 本学科首页   官方微博 | 高级检索  
     

位移反分析的粒子群优化-高斯过程协同优化方法
引用本文:苏国韶,张克实,吕海波. 位移反分析的粒子群优化-高斯过程协同优化方法[J]. 岩土力学, 2011, 32(2): 510-515
作者姓名:苏国韶  张克实  吕海波
作者单位:广西大学,土木建筑工程学院,南宁,530004
基金项目:国家自然科学基金,中国博士后科学基金,中国博士后科学基金特别资助
摘    要:针对采用随机全局优化技术进行岩土工程位移反分析存在数值计算量大、效率低的问题,将粒子群优化算法与高斯过程机器学习技术相结合,提出了位移反分析的粒子群优化-高斯过程协同优化方法。该方法利用全局寻优性能优异的粒子群优化算法进行寻优的基础上,采用高斯过程机器学习模型不断地总结历史经验,预测包含全局最优解的最有前景区域,通过提高粒子群搜索效率并降低适应度评价次数,进而有效地降低位移反分析过程中的数值计算工作量。多种测试函数的数学验证和工程算例的研究结果表明该方法是可行的,与传统方法相比较,可显著地降低位移反分析的计算耗时。

关 键 词:位移反分析  优化  粒子群优化  高斯过程机器学习
收稿时间:2009-07-02

A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis
SU Guo-shao,ZHANG Ke-shi,L Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. Rock and Soil Mechanics, 2011, 32(2): 510-515
Authors:SU Guo-shao  ZHANG Ke-shi  L Hai-bo
Affiliation:College of Civil and Architecture Engineering Guangxi University, Nanning 530004, China
Abstract:Aiming to the problem about expensive cost and low efficiency of stochastic global optimization technology for displacement back analysis in geotechnical engineering, a novel cooperative optimization algorithm based on particle swarm optimization (PSO) algorithm and Gaussian process (GP) machine learning for back analysis is proposed. In order to reduce the cost of numerical calculation during displacement back analysis, the new method not only takes advantage of the global optimization performance of particle swarm optimization with quick convergence, but also uses GP model to summarize the historic experience during searching optimum solution and predicting the most perspective zone for guiding the flying of particle swarm. The results of performance analysis for different benchmark functions and application to a tunnel engineering show that the method is feasible to reduce remarkably computational time-consuming for solving problem of displacement back analysis based on numerical calculation.
Keywords:displacement back analysis  optimization  particle swarm optimization  Gaussian process machine learning  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号