首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure vs. composition: A solid-state H and Si NMR study of quenched glasses along the Na2O-SiO2-H2O join
Authors:George D Cody  Bjorn O Mysen
Institution:1 Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015, USA
2 School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
Abstract:A suite of six hydrous (7 wt.% H2O) sodium silicate glasses spanning sodium octasilicate to sodium disilicate in composition were analyzed using 29Si single pulse (SP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, 1H-29Si cross polarization (CP) MAS NMR, and fast MAS 1H-NMR. From the 29Si SPMAS data it is observed that at low sodium compositions dissolved water significantly depolymerizes the silicate network. At higher sodium contents, however, dissolved H2O does not affect a significant increase in depolymerization over that predicted based on the Na/Si ratio alone. The fast MAS 1H-NMR data reveal considerable complexity in proton environments in each of the glasses studied. The fast MAS 1H-NMR spectra of the highest sodium concentration glasses do not exhibit evidence of signficantly greater fractions of dissolved water as molecular H2O than the lower sodium concentration glasses requiring that the decrease in polymerization at high sodium contents involves a change in sodium solution mechanism. Variable contact time 1H-29Si cross polarization (CP) MAS NMR data reveal an increase in the rotating frame spin lattice relaxation rate constant (T*) for various Qn species with increasing sodium content that correlates with a reduction in the average 1H-29Si coupling strength. At the highest sodium concentration, however, T* drops significantly, consistent with a change in the Na2O solution mechanism.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号