首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Weathering geochronology by (U-Th)/He dating of goethite
Authors:David L Shuster  Paulo M Vasconcelos  Kenneth A Farley
Institution:1 Division of Geological and Planetary Sciences, MC 100-23, California Institute of Technology, Pasadena, CA 91125, USA
2 Department of Earth Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
Abstract:Nine samples of supergene goethite (FeOOH) from Brazil and Australia were selected to test the suitability of this mineral for (U-Th)/He dating. Measured He ages ranged from 61 to 8 Ma and were reproducible to better than a few percent despite very large variations in U] and Th]. In all samples with internal stratigraphy or independent age constraints, the He ages corroborated the expected relationships. These data demonstrate that internally consistent He ages can be obtained on goethite, but do not prove quantitative 4He retention. To assess possible diffusive He loss, stepped-heating experiments were performed on two goethite samples that were subjected to proton irradiation to produce a homogeneous distribution of spallogenic 3He. The 3He release pattern indicates the presence of at least two diffusion domains, one with high helium retentivity and the other with very low retentivity at Earth surface conditions. The low retentivity domain, which accounts for ∼ 5% of 3He, contains no natural 4He and may represent poorly crystalline or intergranular material which has lost all radiogenic 4He by diffusion in nature. Diffusive loss of 3He from the high retentivity domain is independent of the macroscopic dimensions of the analyzed polycrystalline aggregate, so probably represents diffusion from individual micrometer-size goethite crystals. The 4He/3He evolution during the incremental heating experiments shows that the high retentivity domain has retained 90%-95% of its radiogenic helium. This degree of retentivity is in excellent agreement with that independently predicted from the helium diffusion coefficients extrapolated to Earth surface temperature and held for the appropriate duration. Considering both the high and low retentivity domains, these data indicate that one of the samples retained 90% of its radiogenic 4He over 47.5 Ma and the other retained 86% over 12.3 Ma. Thus while diffusive-loss corrections to supergene goethite He ages are required, these initial results indicate that the corrections are not extremely large and can be rigorously quantified using the proton-irradiation 4He/3He method.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号