首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and theoretical study of hydration of halide ions
Authors:Alexander Likholyot
Institution:Institut für Mineralogie und Petrographie, ETH-Zentrum (Swiss Federal Institute of Technology), CH-8092 Zurich, Switzerland
Abstract:We have studied thermochemistry of the first hydration steps for Cl, Br, and I in the gas phase both experimentally using high-pressure mass spectrometry (HPMS) and theoretically using density functional theory (DFT) calculations. The highest hydration steps measured experimentally were n = 8 for Cl, n = 7 for Br, and n = 5 for I, all of them being higher than previously reported. Both experimental and theoretical stepwise enthalpies and entropies of hydration for these halides exhibited non-monotonic behavior for successive hydration steps that was not reported in previous HPMS investigations of these reactions. This behavior can be successfully interpreted using halide water cluster geometries obtained from DFT calculations by considering the number of additional hydrogen bonds formed at each hydration step and simultaneous weakening of ion-solvent interaction with increasing cluster size. Results of DFT calculations for surface cluster geometries agree better with experimental results than do the results for interior cluster geometries. We conclude that predominantly surface clusters were observed in our experiments and that small surface clusters have larger number of possible isomers than the interior clusters of the same size. The results for enthalpies of hydration for the studied halide ions lead to the conclusion that ion-solvent interaction is stronger than solvent-solvent interaction for chloride-water clusters. The difference between the two types of interaction diminishes with increasing anion size. The ion-solvent and solvent-solvent interactions are of nearly equal magnitude for iodide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号