首页 | 本学科首页   官方微博 | 高级检索  
     


A critical review of methods for pile design in seismically liquefiable soils
Authors:S. Bhattacharya  S. P. G. Madabhushi
Affiliation:(1) Dynamics, University of Bristol, Bristol, UK;(2) Department of Civil Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK;(3) Geotechnical Engineering, University of Cambridge, Cambridge, UK
Abstract:Collapse and/or severe damage to pile-supported structures are still observed in liquefiable soils after most major earthquakes. Poor performance of pile foundations remains a great concern to the earthquake engineering community. This review paper compares and contrasts the two plausible theories on pile failure in liquefiable soils. The well established theory of pile failure is based on a flexural mechanism; where the lateral loads on the pile (due to inertia and/or lateral spreading) induce bending failure. This theory is well researched in the recent past and assumes that piles are laterally loaded beams. A more recent theory based on buckling instability treats the piles as laterally unsupported slender columns in liquefiable soils and investigates the buckling instability (bifurcation). The objective of this paper is to investigate the implications to practical pile foundation design that flow from both these theories. Provisions for design made by major international codes of practice for pile design including the Japanese Highway Code (JRA) will be considered. The necessity for such codes to consider alternative forms of failure mechanisms such as the buckling instability of piles in liquefied ground will be discussed. S. Bhattacharya–Previously Departmental Lecturer in Engineering Science, University of Oxford, UK and Fellow of Somerville College, Oxford. S. P. G. Madabhushi–Fellow of Girton College, Cambridge.
Keywords:Lateral spreading  Buckling instability  Bending mechanism  Plastic hinge  Showa Bridge  Codes of practice
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号