首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的地震波形智能识别研究
引用本文:(郑 周1,2,林彬华3,金 星1,2,韦永祥 3,丁炳火3,陈 辉3). 基于卷积神经网络的地震波形智能识别研究[J]. 世界地震工程, 2023, 39(2): 148-157
作者姓名:(郑 周1  2  林彬华3  金 星1  2  韦永祥 3  丁炳火3  陈 辉3)
作者单位:1. 中国地震局工程力学研究所 中国地震局地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080; 2. 地震灾害防治应急管理部重点实验室, 黑龙江 哈尔滨 150080; 3. 福建省地震局,福州 350003
基金项目:国家自然科学基金项目(42104062)资助;
摘    要:随着世界上多个国家和地区的地震预警系统投入运行,误报和漏报等问题逐渐突显,特别是将标定以及强干扰波形误识别为大震事件,快速、精确地区分地震与其他波形是一个难题。针对于此,该研究提出了基于卷积神经网络地震波形智能识别方法。首先收集并处理了2012—2017年中国境内福建以及周边邻省共683个地震和478个爆破事件,并对这些样本筛选、截取和基线校正等预处理,共得到了27 500条三通道波形。在此基础上,构建了3 s波形输入的卷积神经网络模型(SW-CNN)。结果表明:模型对地震、噪声、爆破和异常波形的识别率分别为97.9、99、99.2和99.3%。相比于人工手动分类识别,该模型更省时和更稳定,为地震预警目前所面临的问题提供了一个新的解决方法。

关 键 词:地震预警  卷积神经网络  波形分类  异常波形  基线校正

Intelligent recognition of seismic waveform based on convolutional neural network
(ZHENG Zhou1,' target="_blank" rel="external">2,LIN Binhua3,JIN Xing1,' target="_blank" rel="external">2,WEI Yongxiang3,DING Binghuo3,CHEN Hui3). Intelligent recognition of seismic waveform based on convolutional neural network[J]. World Information On Earthquake Engineering, 2023, 39(2): 148-157
Authors:(ZHENG Zhou1,' target="  _blank"   rel="  external"  >2,LIN Binhua3,JIN Xing1,' target="  _blank"   rel="  external"  >2,WEI Yongxiang3,DING Binghuo3,CHEN Hui3)
Affiliation:1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China; 2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management,Harbin 150080, China; 3. Earthquake Administration of Fujian Province, Fuzhou 350003, China
Abstract:With the operation of earthquake early warning in many countries and regions in the world, the problems of false alarm and missing alarm are gradually highlighted, In particular, calibration and strong interference signals are misidentified as large earthquake events, it is an problem to distinguish seismic waveform from other waveform quickly and accurately. For this, in this study, an intelligent recognition method of seismic waveform based on convolutional neural network is proposed. Firstly, the seismic data of Fujian, Taiwan and neighboring provinces from 2012 to 2017 were collected and processed, a total of 683 earthquakes and 478 blasting events; there samples were preprocessed by screening, interception and baseline correction, 27500 three-channel waveforms were obtained. On this basis, a convolutional neural network model(SW-CNN)was constructed by inserting three-second data records. The results show that the recognition rates of earthquake, noise, blasting, abnormal waveforms are 97.9%, 99%, 99.2%, and 99.3%, respectively. Compared with manual classification recognition, the model is more time-saving and stable for waveform classification, it provides a new solution for the problems faced by earthquake early warning at present.
Keywords:earthquake early warning   convolution neural network   waveform classification   abnormal waveform   baseline correction
点击此处可从《世界地震工程》浏览原始摘要信息
点击此处可从《世界地震工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号