首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Collision tectonics in the New Hebrides arc (Vanuatu)
Authors:Sebastien Meffre and  Anthony J Crawford
Institution:Centre for Ore Deposit Research, University of Tasmania, GPO Box 252-79, Hobart, Tasmania 7001, Australia (email:;),School of Earth Sciences, University of Tasmania, GPO Box 252-79, Hobart, Tasmania 7001, Australia
Abstract:Abstract The New Hebrides island arc in Vanuatu has been significantly modified by collision with several major submarine ridges and plateaux. Bathymetric sections taken at intervals along the arc, perpendicular to the trench, show that prior to collision at 3 Ma the morphology was typical of modern intraoceanic island arcs. Collision has caused uplift of the trench and forearc (up to 6000 m), subsidence around the arc volcanic edifices (up to 2500 m), forming a large intra-arc basin and uplift of the arc-backarc transition (up to 2000 m). In the transition zone between collisional and non-collisional sections of the arc, subsidence occurs in the forearc and uplift occurs around the arc volcanoes. Many of these characteristics are typical of collisions in other Western Pacific island arcs such as the Tonga–Kermadec and Izu–Bonin arcs. The pattern of uplift and subsidence has important implications for the tectonic history of the New Hebrides system. The morphology of the arc shows that collision of the West Torres Massif probably accounts for at least half the uplift. Arrival at 0.7 Ma of the West Torres Massif in the trench may have caused the slowing of subduction in the entire northern half of the arc and not just in the central segment as previously suggested. Re-equilibration of the arc following collision probably masks any evidence of collision prior to 3 Ma. For example, the Efate re-entrant, a large indentation in the arc immediately to the south of the collision zone, probably originated as a result of erosion during collision followed by subsidence after collision. The Vanuatu collision shows that the subduction of seamounts and ridges in an intraoceanic arc temporarily changes the arc morphology, allowing the development of angular unconformities and changing the pattern of sedimentation. This provides information which can be used to facilitate recognition of these events in ancient arc-related sequences.
Keywords:arc morphology  collision  d'Entrecasteaux  New Hebrides  south-west Pacific  tectonics  uplift  Vanuatu  West Torres Massif
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号