首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low energy trajectories for the Moon-to-Earth space flight
Authors:V V Ivashkin
Institution:(1) Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4, 125 047 Moscow, Russia
Abstract:The Moon-to-Earth low energy trajectories of ‘detour’ type are found and studied within the frame of the Moon-Earth-Sun-particle system. These trajectories use a passive flight to the Earth from an initial elliptic selenocentric orbit with a high aposelenium. The Earth perturbation increases the particle selenocentric energy from a negative value first to zero and then to a positive one and therefore leads to a passive escape of the particle motion from the Moon attraction near the translunar libration pointL 2. This results in the particle flight to a distance of about 1.5 million km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value that leads to the particle approaching the Earth vicinity in about 100 days of the flight. A set of the Moon-to-Earth ‘detour’ trajectories is defined numerically. Characteristics of these trajectories are presented. The ‘detour’ trajectories give essential economy of energy (about 150 m/s in Delta V) relative to the usual ones.
Keywords:  Detour’  lunar trajectories  Moon-Earth flight  escape  gravitational perturbations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号