首页 | 本学科首页   官方微博 | 高级检索  
     

基于CMIP5模式的中国气候变化敏感性预估与分析
引用本文:梁玉莲,韩明臣,延晓冬,赖雨薇. 基于CMIP5模式的中国气候变化敏感性预估与分析[J]. 气象科学, 2016, 36(2): 158-164
作者姓名:梁玉莲  韩明臣  延晓冬  赖雨薇
作者单位:南宁市气象局, 南宁 530029,广西壮族自治区林业勘测设计院, 南宁 530028,北京师范大学 地表过程与资源生态国家重点实验室, 北京 100875,南宁市气象局, 南宁 530029
基金项目:国家重大科学研究计划项目(2012CB95570002)
摘    要:以CMIP5提供的26个全球气候系统模式的温度和降水数据为基础,采用区域气候变化指数(Regional Climate Change Index,RCCI)分析中国的不同区域对21世纪气候变化响应的敏感性。结果表明,三种排放情景(RCP 2.6、RCP 4.5、RCP 8.5)下,21世纪全期,气候变化最敏感的区域分布在西藏地区,其次为我国西北地区以及东北地区,气候变化敏感性最低的区域分布在我国内蒙古中东部、华北地区以及长江中下游一带,且高排放情景对应更高的气候变化敏感性。对RCCI指数贡献因子分析结果表明,对中国气候变化敏感性贡献的大小依次为Δσ_TΔσ_pΔRRWAF。冬夏两季温度变化的大值区与RCCI指数的大致区分布一致,RCCI大小的分布很大程度上由温度变化的敏感性决定。而夏季降水变化的大值区主要出现在西藏地区、华南地区和东北地区,冬季降水变化的大值区则主要出现在黄河以南长江以北的中原地区以及东北地区。

关 键 词:多模式集合  气候变化指数  敏感性  预估
收稿时间:2014-11-11
修稿时间:2015-05-15

CMIP5 model-based prediction and sensitivity analysis of climate change in China
Liang Yulian,Han Mingchen,Yan Xiaodong and Lai Yuwei. CMIP5 model-based prediction and sensitivity analysis of climate change in China[J]. Journal of the Meteorological Sciences, 2016, 36(2): 158-164
Authors:Liang Yulian  Han Mingchen  Yan Xiaodong  Lai Yuwei
Affiliation:Nanning Meteorological Service, Nanning 530029,Guangxi Forest Inventory and Planning Institute, Nanning 530028,State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 and Nanning Meteorological Service, Nanning 530029
Abstract:Based on temperature and precipitation data of 26 global climate system models provided by CMIP5, this study analyzed sensitivity of response of climate change in different regions of China in 21 century using Regional Climate Change Index (RCCI). Results showed that the most sensitive regions of climate change were all distributed in Tibet, and followed by northwest and northeast regions, and the least sensitive regions were distributed in east-central area of Inner Mongolia, north China and middle and lower reaches of the Yangtze throughout 21th century under three scenarios(RCP 2.6, RCP 4.5, RCP 8.5). High emission scenario were greatly related to high sensitivity of climate change. According to analysis of RCCI contribution factors, the distribution of areas with significant change of temperature in winter and summer are mainly consistent with that of RCCI, which indicated that the distribution of RCCI greatly depended on the sensitivity of temperature change. The areas with significant change of precipitation are mainly distributed in Tibet, south and northeast China for summer but it distributed in the central plain area from the south of the Yellow River to the north of the Yangtze river for winter.
Keywords:Multi-model ensemble  RCCI  Sensitivity  Prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号