首页 | 本学科首页   官方微博 | 高级检索  
     


Derivation of Photosynthetically Available Radiation from METEOSAT data in the German Bight with Neural Nets
Authors:Kathrin Schiller
Affiliation:(1) GKSS Research Centre, Institute for Coastal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Abstract:Two different models, a Physical Model and a Neural Net (NN), are used for the derivation of the Photosynthetically Available Radiation (PAR) from METEOSAT data in the German Bight; advantages and disadvantages of both models are discussed. The use of a NN for derivation of PAR should be preferred to the Physical Model because by construction, a NN can take the various processes determining PAR on a surface much better into account than a non-statistical model relying on averaged relations.
Contact Information Kathrin SchillerEmail:
Keywords:Photosynthetically Available Radiation  Neural Nets  German Bight  METEOSAT
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号