首页 | 本学科首页   官方微博 | 高级检索  
     

联合概率密度空间的遥感自适应变化检测方法
引用本文:吴炜,沈占锋,吴田军,王卫红. 联合概率密度空间的遥感自适应变化检测方法[J]. 测绘学报, 2016, 45(1): 73-79. DOI: 10.11947/j.AGCS.2016.20140484
作者姓名:吴炜  沈占锋  吴田军  王卫红
作者单位:1. 浙江工业大学计算机学院, 浙江 杭州 310023;2. 中国科学院遥感与数字地球研究所, 北京 100101;3. 长安大学理学院, 陕西 西安 710064
基金项目:国家自然科学基金(41301473),国家科技重大专项(03-Y30B06-9001-13/15-01),浙江省自然科学基金(LZ14F020001),The National Natural Science Foundation of China(41301473),National Science and Technology Major Project (No.03-Y30B06-9001-13/15-01).The National Natural Science Foundation of Zhejiang Province of China(LZ14F020001)
摘    要:多种因素引起的辐射特征变化,将造成阈值法变化检测的误检。对此,本文提出了一种联合概率密度空间的多阈值自适应变化检测方法。首先,将影像从像素空间转化到联合概率密度空间,将变化地物定义为联合概率密度空间的离群点,并采用迭代方法将其提取,然后映射回原始影像后确定变化区域。选取两种典型应用进行试验,结果表明,本文方法在正确率、误检率和漏检率方面优于传统方法,具有较好的稳健性。

关 键 词:非监督变化检测  联合概率密度  自适应多阈值  迭代法  
收稿时间:2014-09-17
修稿时间:2015-09-13

Joint Probability Space Based Self-adaptive Remote Sensing Change Detection Method
WU Wei,SHEN Zhanfeng,WU Tianjun,WANG Weihong. Joint Probability Space Based Self-adaptive Remote Sensing Change Detection Method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 73-79. DOI: 10.11947/j.AGCS.2016.20140484
Authors:WU Wei  SHEN Zhanfeng  WU Tianjun  WANG Weihong
Affiliation:1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China;2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;3. College of Science, Chang'an University, Xi'an 710064, China
Abstract:A variety of factors has led to radiometric variations of the land cover, which severely limits the threshold based change detection method performance. To overcome this problem, we propose a joint probability density space based self adaptive multi-threshold change detection approach. Firstly, the two images of the same geographic area acquired at different time are transformed into the joint probability space. In which, the land cover change pixels are defined as outliers and identified by an iterative method. Then, the extracted outliers are mapped back to the original image space and determine the change area. To illustrate the performance of the proposed method, an experimental analysis on two classical applications is reported and discussed, results show that the proposed method over performed the state of art method in true rate, false alarm rate and omit alarm rate, with high stability.
Keywords:unsupervised change detection  joint probability density  self-adaptive multi threshold  iterative method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号