首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simultaneous adsorption of divalent and trivalent metal cations by iron oxide-coated gravel
Authors:B Sizirici  I Yildiz
Institution:1.Civil, Environmental and Infrastructure Department,Khalifa University,Abu Dhabi,United Arab Emirates;2.Applied Mathematics and Science Department,Khalifa University,Abu Dhabi,United Arab Emirates
Abstract:Reducing heavy metal concentrations to allowable levels in landfill leachate before discharge is an extremely important process to prevent environmental pollution. Iron oxide-coated gravel was used in order to remove Cd(II), Cu(II), Pb(II), Fe(III) and Al(III) simultaneously in high-strength synthetic leachate samples. Batch and column studies were performed to determine the kinetics and mechanism of adsorption process. The experimental data obtained from batch study satisfactorily fitted to the Freundlich model indicating surface heterogeneity and multilayer adsorption process. The data obtained from kinetic studies followed the pseudo-second-order kinetics indicating adsorption governed by chemisorption. The metal adsorption order observed in the batch study was Pb(II)(99.72%) ≈ Cu(II)(99.61%) ≈ Cd(II)(99.51%) ≈ Fe(III)(99.3%) > Al(III)(93.3%) at pH 7. Average metal removals in the fixed-bed column were found to be 96.5% for Cu(II), 94.8% for Pb(II), 90% for Cd(II), 84% for Fe(III) and 67% for Al(III). Iron oxide-coated gravel column adsorption capacity ranged from 0.56 to 66.82 mg/g. Recovery efficiency of adsorbed metals via desorption was between 5–97.75% in first cycle and 2–80.3% in second cycle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号