首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of near‐fault ground motions on the nonlinear dynamic response of base‐isolated r.c. framed buildings
Authors:Fabio Mazza  Alfonso Vulcano
Affiliation:Dipartimento di Modellistica per l'Ingegneria, Universit à della Calabria, 87036 Rende (Cosenza), Italy
Abstract:Near‐fault ground motions are characterized by long‐period horizontal pulses and high values of the ratio between the peak value of the vertical acceleration, PGAV, and the analogous value of the horizontal acceleration, PGAH, which can become critical for base‐isolated (BI) structures. The objective of the present work is to check the effectiveness of the base isolation of framed buildings when using High‐Damping‐Rubber Bearings (HDRBs), taking into consideration the combined effects of the horizontal and vertical components of near‐fault ground motions. To this end, a numerical investigation is carried out with reference to BI reinforced concrete buildings designed according to the European seismic code (Eurocode 8). The design of the test structures is carried out in a high‐risk region considering (besides the gravity loads) the horizontal seismic loads acting alone or in combination with the vertical ones and assuming different values of the ratio between the vertical and horizontal stiffnesses of the HDRBs. The nonlinear seismic analysis is performed using a step‐by‐step procedure based on a two‐parameter implicit integration scheme and an initial‐stress‐like iterative procedure. At each step of the analysis, plastic conditions are checked at the potential critical sections of the girders (i.e. end sections of the sub‐elements in which a girder is discretized) and columns (i.e. end sections), where a bilinear moment–curvature law is adopted; the effect of the axial load on the ultimate bending moment (M‐N interaction) of the columns is also taken into account. The response of an HDRB is simulated by a model with variable stiffness properties in the horizontal and vertical directions, depending on the axial force and lateral deformation, and linear viscous damping. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:base‐isolation  framed building  near‐fault ground motions  aseismic design  seismic code  nonlinear modeling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号