首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer
Institution:1. Universitat de les Illes Balears (UIB), Palma, Spain;2. GRC Geociències Marines, Universitat de Barcelona, Barcelona, Spain;3. Dipartimento di Scienze della Vita e dell''Ambiente, Università Politecnica delle 12 Marche, Ancona, Italy;1. Adam Mickiewicz University, Department of Climatology, Dzi?gielowa 27, 61–680 Poznań, Poland;2. Institute of Meteorology and Water Management, National Research Institute, Centre for Poland’s Climate Monitoring, Podle?na 61, 01–673 Warsaw, Poland;1. Division of Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea;2. Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea;3. OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
Abstract:As part of two USJGOFS cruises, we investigated spatial variability in phytoplankton properties across the strong environmental gradient associated with the Antarctic Polar Frontal Zone during late austral summers of 1997 and 1998. Cell properties, including size and an index of pigment content as well as photosynthetic efficiency (as indicated by relative variable fluorescence), changed dramatically across this frontal region. A general trend toward reduced photosynthetic efficiency south of the Polar Front was correlated with low dissolved iron concentration and is consistent with physiological iron limitation in the phytoplankton. We detected no significant differences in photosynthetic efficiency among different size classes of the dominant pico- to nanophytoplankton, despite a systematic community level shift toward larger sized cells south of the Polar Front. In contrast to other cells, those classified as cryptophyte algae showed relatively high photosynthetic efficiency in low iron waters; however, this group was never found in high abundance. One group, all cells ?2 μm, showed an unexpected increase in intracellular pigment content (based on single cell chlorophyll fluorescence measurements) south of the Polar Front where dissolved iron concentration and the cells’ relative abundance were low. Overall, these results suggest that group- or size-specific differences in physiological status were not directly regulating community structure in the pico- to nanophytoplankton during the late summer season; other processes, such as differential grazing or sinking losses, must be important.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号