Source modeling of the Hsingtai,China earthquakes of March 1966 |
| |
Authors: | Wai-Ying Chung John J. Cipar |
| |
Affiliation: | Department of Geology, University of South Carolina, Columbia, South Carolina 29208 U.S.A.;Seismological Laboratory, California Institute of Technology, Pasadena, California 91125 U.S.A. |
| |
Abstract: | The Hsingtai, China earthquakes of March 1966 were a series of destructive earthquakes associated with the Shu-lu graben. Five strong shocks of Ms ≥ 6 occurred within a period of less than a month, the largest of which was Ms 7.2. Body and surface waves over the period range from several to 100 s have been modeled for the four largest events using synthetic seismograms in the time domain and spectral analysis in the frequency domain. Data from ground deformation, local geology, regional seismic network, and teleseismic joint epicenter determination have also been used to constrain the source model and the rupture process.The fault mechanism of the Hsingtai sequence was mainly strike-slip with a small component of normal dip-slip. The strikes of the four largest shocks range from ~ N26° to 30°E, approximately along strike of the major faults of the Shu-lu graben and the aftershock distribution. The source mechanisms can be explained with a NNW-SSE extensional stress and a NEE-SWW compressional stress acting in the area. The major shocks all had focal depths ~ 10 km.The four largest shocks in the sequence were characterized by a relatively simple and smooth dislocation time history. The durations of the far-field source time functions ranged from 3.5 to 5 s, while the rise times were all ~ 1 s. The seismic moments of the four largest earthquakes ranged from 1.43 × 1025 to 1.51 × 1026 dyne cm?1. The fault sizes of the four events were very close. Assuming circular faults, the diameters of the four events were determined to be between 10 and 14 km. Stress drops varied from ~ 52 to 194 bars. A trend of increasing stress drop with earthquake size was observed.A survey of stress drop determinations for 15 major intraplate earthquakes shows that on the average the magnitude of stress drop of oceanic intraplate earthquakes and passive continental margin events is higher (~ 200 to several hundred bars) than that of continental intraplate earthquakes (~ 100 bars or less). |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|