首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uranyl Retention on Quartz—New Experimental Data and Blind Prediction Using an Existing Surface Complexation Model
Authors:Florian Huber  Johannes Lützenkirchen
Institution:(1) Forschungszentrum Karlsruhe (FZK), Institut für Nukleare Entsorgung (INE), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
Abstract:The adsorption behaviour of uranyl onto seven different samples of quartz was studied in batch experiments. Sea-sand (0.1–0.3 mm), Fil-Pro 12/20 (1–2 mm) and five Min-U-Sil samples with smaller particle sizes (5, 10, 15, 30 and 40 μm) were used. The uptake curves show “pH adsorption edges” in the range of pH 4–5. A good agreement of the new data with literature data was found when plotting surface-normalised distribution coefficients versus pH. Differences in the adsorption behaviour for pre-treated and untreated sea-sand samples were detectable resulting in a shift of the pH edge to higher pH values after treatment. A literature surface complexation model was applied for blind predictions of the experimental results. The simulations described the experimental observations quite well for the Min-U-Sil samples. For the two coarser quartz samples, the calculated over-predictions were explained by the larger-than-expected measured specific surface area and measurable amounts of associated minerals, for Fil-Pro 12/20 and sea-sand, respectively. Dissolution of the samples was studied as a function of pH. After 5 days, the measured Si concentrations were all higher than equilibrium quartz solubilities, but lower than those of amorphous silica. With increasing pH, dissolved silica increased. This strongly suggests that formation of dissolved uranyl–silicato complexes have to be considered based on measured silica concentrations.
Keywords:Surface complexation model  Adsorption  Batch experiments  Uranium (VI)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号