首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A distributed approach for calculating inundation height based on Dijkstra's algorithm
Authors:C J Grady  Xingong Li
Institution:1. Department of Geography & Atmospheric Science, University of Kansas, Lawrence, USA;2. Biodiversity Institute, University of Kansas, Lawrence, USA;3. School of Geography and Ocean Science
Abstract:This research proposed a parallelized approach to scaling up the calculation of inundation height, the minimum sea‐level rise required to inundate a cell on a digital elevation model, which is based on Dijkstra's algorithm for shortest‐path calculations on a graph. Our approach is based on the concepts of spatial decomposition, calculate‐and‐correct, and a master/worker parallelization paradigm. The approach was tested using the U.S. Coastal Relief Model (CRM) dataset from the National Geophysical Data Center on a multicore desktop computer and various supercomputing resources through the U.S. Extreme Science and Engineering Discovery Environment (XSEDE) program. Our parallel implementation not only enables computations that were larger than previously possible, but also significantly outperforms serial implementations with respect to running time and memory footprint as the number of processing cores increases. The efficiency of the scalability seemed to be tied to tile size and flattened out at a certain number of workers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号