首页 | 本学科首页   官方微博 | 高级检索  
     

基于Polar1DMLP模型的CCTA冠脉管腔分割方法研究
引用本文:申云鹏, 高雨枫, 章品正, 於文雪, 周寿军, 李宝生, 朱健, 陈阳. 基于Polar1DMLP模型的CCTA冠脉管腔分割方法研究[J]. CT理论与应用研究, 2020, 29(6): 631-642. DOI: 10.15953/j.1004-4140.2020.29.06.01
作者姓名:申云鹏  高雨枫  章品正  於文雪  周寿军  李宝生  朱健  陈阳
作者单位:1. 东南大学 a)生物科学与医学工程学院;b)计算机科学与工程学院, 南京 210096;
基金项目:国家重点研发计划(2017YFA0104302;2017YFC0109202;2017YFC0107900);国家自然科学基金(81530060;61871117)。
摘    要:冠状动脉数字图像造影(CCTA)是一种有效的无创评估冠脉血管狭窄等病变情况的成像技术,对CCTA的自动筛查评估依赖于冠脉管腔的高精度分割。为探索能够分割出高质量的冠脉官腔的算法,本文进行基于深度学习的端到端分割实验以及基于中心线先验信息结合CCTA灰度特征的冠脉管腔分割实验,其中基于深度学习回归方法的Polar1DMLP模型能够结合中心线先验信息得到较好的分割效果。基于公开数据集Coronary Artery Stenoses Detection and Quantification Evaluation Framework中的78组冠脉截段数据进行训练与验证,在16段数据的验证集上得到MSD(mean surface distance)为0.169 mm,DICE为0.796。结果表明本文提出的以中心线为导向信息的Polar1DMLP模型能够较好地整合血管CCTA灰度特征,回归出较为准确的冠脉血管内壁管腔轮廓半径,得到较为平滑的冠脉管腔表面模型,本方法有着较大的潜力以及拓展空间。

关 键 词:冠状动脉管腔  医学图像分割  深度学习  多层感知器
收稿时间:2020-04-22

Polar1DMLP: A Coronary Artery Lumen Segmentation Network in CCTA
SHEN Yunpeng, GAO Yufeng, ZHANG Pinzheng, WU Wenxue, ZHOU Shoujun, LI Baosheng, ZHU Jian, CHEN Yang. Polar1DMLP: A Coronary Artery Lumen Segmentation Network in CCTA[J]. CT Theory and Applications, 2020, 29(6): 631-642. DOI: 10.15953/j.1004-4140.2020.29.06.01
Authors:SHEN Yunpeng  GAO Yufeng  ZHANG Pinzheng  WU Wenxue  ZHOU Shoujun  LI Baosheng  ZHU Jian  CHEN Yang
Affiliation:1. a). School of Biological Science and Medical Engineering;b). School of Computer Science and Engineering, Southeast University, Nanjing 210096, China;2. Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096, China;3. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;4. Shandong Cancer Hospital and Institute, Jinan 250117, China
Abstract:As a reliable and non-invasive medical imaging method,Coronary Computed Tomography Angiography(CCTA) has been used to detect the stenoses and other lesions in coronary arteries.However,effective and automated CCTA imaging examination is based on precise coronary arteries lumen segmentation technology.The purpose of this study was to investigate a model which can get the high-quality 3D surface model of the coronary lumen.Here we proposed the deep learning based 1D Polar1MLP model,which can make good use of the complicated information of the coronary tree centerline information.We trained and evaluated our model with the publicly available Coronary Artery Stenoses Detection and Quantification Evaluation Framework(Rotterdam) including 78 coronary segments with experts'manual contour labels of them,and got the result with a Dice similarity coefficient of 0.796,mean surface distance(MSD) of 0.169 mm in the validation dataset with 16 segments.The result of the study indicated that the 1DPolarMLP model with consideration of the CT gray-level information and centerline guideline information,can predict more precise and smoother 3D surface model of the coronary. 
Keywords:coronary artery lumen  medical image segmentation  deep learning  multilayer perceptron
点击此处可从《CT理论与应用研究》浏览原始摘要信息
点击此处可从《CT理论与应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号