首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Advanced Puff Model Based On A Mixed Eulerian/Lagrangian Approach For Turbulent Dispersion In The Convective Boundary Layer
Authors:Umberto Rizza  Massimo Cassiani  Umberto Giostra  Cristina Mangia
Institution:(1) ISIATA/CNR, Lecce, Italy;(2) Environmental Science Department, University of Urbino, Urbino, Italy
Abstract:An advanced model aimed at describing the problem of dispersion in theconvective boundary layer is proposed. The pollutant particles are groupedin clusters and modelled as Gaussian puffs. The expansion of each puff ismodelled according to the concept of relative dispersion and expressed interms of the spectral properties of the energy containing eddies of the turbulent field. The centre of mass of each puff is moved along a stochastic trajectory, obtained using a Lagrangian stochastic model and filtering the velocity with a recursive Kalman filter. At any instant, a filtering procedure, depending both on travel time and on puff size, acts to select spectral components involved in the expansion and in the meandering of the puff. Such an approach requires only a moderate number of puff releases, so that the proposed model is faster to run than a standard Lagrangian model. On the other hand, unlike the traditional puff model, it allows us to simulate both expansion and meandering of the puff. Therefore, it is well suited to simulate dispersion when the turbulent structures are larger thanthe plume dimensions, as for example in convective conditions. Being based onspectral formulations in both Eulerian and Lagrangian parts, the model is consistent in all the turbulent parameterizations utilised. Comparisons with a standard Lagrangian particle model as well as with a classical convective experimental dataset show good performance of the proposed model.
Keywords:Air pollution modelling  Puff dispersion model  Lagrangian dispersion model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号