首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shallow-Water Acoustic Tomography Performed From a Double-Beamforming Algorithm: Simulation Results
Abstract: Recent shallow-water experiments in sea channels have been performed using two vertical coplanar densely sampled source and receive arrays. Applying a double-beamforming algorithm on the two arrays both on synthetic numerical simulations and on experimental data sets, we extract efficiently source and receive angles as well as travel times for a large number of acoustic rays that propagate and bounce in the shallow-water waveguide. We then investigate how well sound-speed variations in the waveguide are reconstructed using a ray time-delay tomography based on a Bayesian inversion formulation. We introduce both data and model covariance matrices and we discuss on the synthetic numerical example how to choose the a priori information on the sound-speed covariance matrix. We attribute the partial sound-speed reconstruction to the ray-based tomography and we suggest that finite-frequency effects should be considered as the vertical and horizontal size of the Fresnel zone significantly spreads in the waveguide. Finally, the contribution of a different set of ray angles for tomography goal is also presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号