首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于 BP 神经网络的尾矿坝沉降预报方法
引用本文:黄定川,谢世成. 一种基于 BP 神经网络的尾矿坝沉降预报方法[J]. 测绘工程, 2016, 25(8). DOI: 10.19349/j.cnki.issn1006-7949.2016.08.012
作者姓名:黄定川  谢世成
作者单位:云南省红河州水利水电勘察设计研究院,云南 蒙自,661100;云南省红河州水利水电勘察设计研究院,云南 蒙自,661100
摘    要:基于BP神经网络建立尾矿坝沉降预报模型,重点对BP神经网络的拓扑结构和学习算法进行研究。并以某尾矿库初期坝的沉降监测数据为例,对模型的拟合、预测精度进行验证。实例表明,BP神经网络自学习、自组织能力强,具有极强的线性逼真能力,能够准确地反映输入、输出变量之间的非线性关系,有效地表征尾矿坝的沉降变形规律,对即将发生的变形情况做出科学、合理的预报。

关 键 词:BP神经网络  尾矿坝  沉降预报  拟合  预测

A way to predict the settlement of tailings dam based on BP neural network
HUANG Dingchuan,XIE Shicheng. A way to predict the settlement of tailings dam based on BP neural network[J]. Engineering of Surveying and Mapping, 2016, 25(8). DOI: 10.19349/j.cnki.issn1006-7949.2016.08.012
Authors:HUANG Dingchuan  XIE Shicheng
Abstract:The tailings dam sedimentation forecast model is established based on BP neural network ,with emphasis on the topological structure of BP neural network and the learning algorithm .And the fromer subsidence monitoring data of tailings dam has verified the model fitting and prediction accuracy .T he practice shows that ,BP neural network can do well in self‐learning and self‐organizing ,and have a strong linear realistic ability to accurately reflect the input and output of a nonlinear relationship between variables in order to present the settlement law and to make the scientific and rational prediction against the upcoming deformation .
Keywords:BP neural network  tailings dam  subsidence prediction  fitting prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号