首页 | 本学科首页   官方微博 | 高级检索  
     

地球自转参数的LS+AR超短期预报方法
引用本文:韩恒星,党亚民,许长辉,王虎,谷守周,张龙平. 地球自转参数的LS+AR超短期预报方法[J]. 测绘通报, 2017, 0(7): 1-4. DOI: 10.13474/j.cnki.11-2246.2017.0212
作者姓名:韩恒星  党亚民  许长辉  王虎  谷守周  张龙平
作者单位:1. 山东科技大学, 山东 青岛 266590;2. 中国测绘科学研究院, 北京 100830
基金项目:国家重点研发计划,公益性行业专项,国家基础测绘科技项目,国家自然科学基金,中国第二代卫星导航系统重大专项
摘    要:地球自转参数(ERP)是卫星精密定轨中联系天球坐标系与地球坐标系的必要参数,是国际GNSS服务组织(IGS)和国际GNSS监测评估系统(iGMAS)分析中心的重要产品。为了提高中国测绘科学研究院分析中心(CGS)的线性模型预报精度,本文研究了最小二乘(LS)和自回归模型(AR)组合的超短期预报最优方法;通过不同周期数据确定最佳预报时长,利用LS+AR模型进行超短期预报,并通过IGS和iGMAS与线性模型产品对比。结果表明:利用8 d(时段)数据进行超短期预报最优;LS+AR模型预报精度明显优于LS模型;LS+AR的超短期预报方法优于分析中心的线性预报方法;EOP的PMX和PMY分量利用时段数据预报、LOD利用天数据预报精度更高。本文超短期预报方法能够提高ERP预报精度,为IGS或iGMAS分析中心的ERP预报提供了一定的参考意义。

关 键 词:地球自转参数  预报  最小二乘  自回归  
收稿时间:2017-01-10

Ultra Short-term Forecasting of Earth Rotation Parameters Based on LS+AR
HAN Hengxing,DANG Yamin,XU Changhui,WANG Hu,GU Shouzhou,ZHANG Longping. Ultra Short-term Forecasting of Earth Rotation Parameters Based on LS+AR[J]. Bulletin of Surveying and Mapping, 2017, 0(7): 1-4. DOI: 10.13474/j.cnki.11-2246.2017.0212
Authors:HAN Hengxing  DANG Yamin  XU Changhui  WANG Hu  GU Shouzhou  ZHANG Longping
Affiliation:1. Shandong University of Science and Technology, Qingdao 266590, China;2. Chinese Academy of Surveying & Mapping, Beijing 100830, China
Abstract:Earth rotation parameters (ERP) are integral parameters for transformation between the celestial coordinates and the terrestrial coordinates in satellite precise orbit determination, and are also important products for Intenational GNSS Service (IGS) and International GNSS Monitoring and Assessment System (IGMAS).To improve the prediction precision of the linear prediction model used by Chinese Academy of Surveying & Mapping (CGS), the best method of ultra short-term forecasting based on LS+AR is researched.The optimal data length is determined with the CGS data, and then the LS+AR is used to predict the ultrshort term ERP.The results are compared to that of the IGS and iGMAS and show that the optimal data length is eight days (sessions).The prediction precision of LS+AR is much better than that of LS, and also better than the linear model used by CGS.The results also show that the x and y direction prediction of ERP is better with the session's data than the day's data, while the LOD is better with the day's data than the session's data.The LS+AR ultrashort term prediction is a good method to predict the ERP for IGS and iGMAS analysis centers.
Keywords:earth rotation parameters  forecasting  the least squares  autoregression model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号