首页 | 本学科首页   官方微博 | 高级检索  
     

基于八叉树与KD树索引的点云配准方法
引用本文:王育坚,廉腾飞,吴明明,高倩. 基于八叉树与KD树索引的点云配准方法[J]. 测绘工程, 2017, 26(8). DOI: 10.19349/j.cnki.issn1006-7949.2017.08.008
作者姓名:王育坚  廉腾飞  吴明明  高倩
作者单位:北京联合大学 信息学院,北京,100101
基金项目:国家自然科学基金资助项目
摘    要:针对点云配准算法中KD树多维查询效率较低的问题,提出一种基于八叉树和KD树多层索引结构的点云配准方法。首先为模型点云数据建立八叉树全局索引,然后在八叉树叶子结点构建局部数据的KD树索引。对传统的ICP点云配准算法进行改进,通过叶子结点的全局索引值快速定位局部点云数据块,利用局部KD树索引加快最近点的搜索,计算最近点时利用欧氏距离阈值、点对距离差值和法向量阈值剔除部分噪声点。实验表明,改进算法提高了点云配准的效率和精度。

关 键 词:点云配准  八叉树  KD树  ICP算法

Point cloud registration based on octree and KD-tree index
WANG Yujian,LIAN Tengfei,WU Mingming,GAO Qian. Point cloud registration based on octree and KD-tree index[J]. Engineering of Surveying and Mapping, 2017, 26(8). DOI: 10.19349/j.cnki.issn1006-7949.2017.08.008
Authors:WANG Yujian  LIAN Tengfei  WU Mingming  GAO Qian
Abstract:A multilayer index structure based on octree and KD tree is reported for low query efficiency problems in multi-dimensional queries of KD tree.First, the octree global index for model point cloud is established.Then, the local data KD-tree indexes are built in the octree leave nodes.To improve the traditional Iterative Closest Point algorithm, the local point cloud data is quickly located based on the global index of leave nodes.Using the local KD tree indexes, the searching speed of closest point is sped up.Part of the noise points are removed by the euclidean distance threshold, the difference of interval of point pair and the normals threshold.Experimental result indicates that the proposed method can improve the efficiency and accuracy of registration.
Keywords:point cloud registration  octree  KD-tree  ICP algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号