首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of cometary evolution by kinetic theory: Method and first results
Authors:Marek Banaszkiewicz and Hans Rickman
Affiliation:(1) Space Research Centre, Bartycka 18a, 00-716 Warszawa, Poland;(2) Astronomical Observatory, S-75120 Uppsala, Sweden
Abstract:Physical evolution of Jupiter family (JF) comets is considered as a simultaneous process of erosion and fading. Dynamical effects are limited to discrete changes of the perihelion distance, that result in changes of the evaporation rate. Assuming that the JF comet population is in a steady state, a distribution function of this population in the two dimensional phase space consisting of radius and active fraction of the nucleus surface is found as the solution of a set of kinetic equations, each one of them for a different perihelion distance. With use of the distribution function some statistical properties of the comet population, like the total number of comets in the considered region of the phase space, the number of objects that evaporate or get dormant per unit time, etc., are obtained. The cumulative distribution function with respect to the absolute brightness is calculated and compared with the observed one as a check on the considered models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号