a Victoria University of Technology, School of Life Sciences, P.O. Box 14428, MCMC 8001, Vic., Australia
b University of South Australia, School of Pharmacy, North Terrace, Adelaide, SA, Australia
Abstract:
Germination inhibition of zoospores of the aquatic, brown algal macrophyte Ecklonia radiata was employed to assess the toxicity of sewage effluents under short to long term exposure and under modified salinity conditions. The rate of germination inhibition was determined for exposure times between 2 and 48 h in salinity modified and unmodified regimes and under reduced salinity conditions alone. The results indicated that rate of germination inhibition increased with duration of exposure to sewage effluents and to salinity reduction alone, and that response to the effluents may be enhanced under conditions of reduced salinity. Whilst the effect of primary treated effluent was primarily that of toxicity, secondary treated effluent effects appeared to be primarily that of reduced salinity although at a greater rate than would be expected for salinity reduction alone. The assay is suggested to provide a mechanism for monitoring sewage effluent quality and to monitor potential impacts of sewage effluent discharge on kelp communities in southern Australia.